Prateek Verma

PhD. Qualifies for O1 & EB1.

Website: www.prateekverma.com, Email: prateek@uark.edu, Phone: +1 5014006833

Seeking opportunities where I can leverage my industrial and academic experience to drive differentiation and innovation. I am a machine learning scientist with cross-functional expertise in chemicals, materials, health, and environment. My key strengths lie in visionary and complex problem solving for the domains listed above, leadership, and research advising.

Education

Georgia Institute of Technology, 2011 - 2015

PhD, Materials Science and Engineering, GPA 4.0/4.0 Thesis – Auxetic behavior in polymer/fiber network structures

Indian Institute of Technology Roorkee, 2006 - 2011

BS and MS, Polymer Science and Technology, GPA 8.5/10.0 Thesis – Nanomechanics of tissue engineering polymer blend scaffolds

Experience

Manager, Data Science Core, University of Arkansas, 2023 - present

Arkansas Integrative Metabolic Research Center (AIMRC)

- Evaluation, fine-tuning, and prompt engineering of large (vision) language models (LLMs) using multimodal data
- Building machine learning algorithms focused on medical research
- Serving 50+ researchers with their data science and machine learning needs
- Managing high-performance computing and data-storage servers

Postdoctoral Fellow, University of Arkansas, 2021 – 2023

Nayani, Nakarmi and Wu groups

- Built an end-to-end CNN ML pipeline for scientific images
- Built graph and generative algorithms for molecular discovery and finding functional groups on molecules and macromolecules
- Applications: predicting onset of diseases, sensors for bacteria and viruses, drug and molecular design, medical diagnosis

Postdoctoral Fellow, Georgia Institute of Technology, 2018 – 2021

Shofner and Russo groups

- Developed multivariable deep neural network regression to split, interpolate, and predict total signal into constituents
- Developed CNN and regression algorithms for noise detection in signals
- ML applications: Extract pollution composition (expensive measurement) from total PM2.5 (inexpensive) data; noise detection in light scattering data
- Fabricated metamaterial composites using tensegrity/auxetic approaches
- Executive Director for OPALL (Open Polymer Active Learning Laboratory)

Senior Coating Chemist, Kimoto Tech, 2016 - 2018

- Team leader for 5 R&D chemists
- Led scale-up and production of 15+ lab-to-market products
- Development of flexible & protective coatings, conductive coatings, and pressure sensitive adhesives

PhD candidate, Georgia Institute of Technology, 2011 – 2015

Griffin and Shofner groups

- Synthesized intrinsically auxetic liquid crystal elastomers
- Developed protocols for accurately measuring Poisson's ratio
- Developed a new method to induce auxetic properties in nonwovens
- Modeled processing-structure-property relations for auxetic behavior in fiber networks

Research Assistant (Master's), University of Akron, 2011

Karim group

- Developed a buckling-based metrology to determine strength of thin films

- Prepared and tested strength of polymer-blend films used in tissue engineering

Summer Intern, University of Massachusetts Amherst, 2010

McCarthy group

- Synthesized uniformly sized silica nanoparticles for composite applications
- Created super-hydrophobic surfaces using silanes; synthesized cross-linked silicones

Summer Intern, University of Minnesota, 2009

Barocas group

- Synthesized epoxy networks to study flow through kidney membranes
- Synthesized and characterized collagen gels for tissue engineering

Skills

Machine Learning – Large language models, Vision language models, Graph neural networks, Chemical informatics, ML pipelines, RESNET, Support vector machines, K-Means clustering, Convolutional neural networks, Image preprocessing, Logistic regression, Linear regression.

Computer languages – Python, JavaScript, MATLAB, PHP, SQL, C/C++.

Computational – BioPython, Django, RDKit, Pandas, Tensorflow & PyTorch, Numpy, Scikit, Matplotlib, LAMMPS, Amazon Web Services, MATLAB, MySQL.

Chemistry – Polyurethane synthesis, Thermal & UV curing, LC elastomer synthesis, Free radical polymerization, Silanes & silicones.

Materials – Liquid crystals, Polymer processing, Viscoelasticity, Auxetic materials, Metamaterials, Biopolymers, Nanotechnology, Characterization, Structure-property relationships, Thermal analysis.

Industry – Adhesives, Process development, Chemical mixing, Chemical formulations, Protective coatings, Scale-up operations, Thermal & UV curing.

Interpersonal – Diversity, equity and inclusion, Mentoring, Research advising, Leadership, Team building, Teaching, Illustration. **Lab Techniques** – Isothermal titration calorimetry, Environmental testing, Electron microscopy, FTIR, Micro-CT, Viscometry, Atomic force microscopy, DSC, TGA, DMA, Mechanical testing.

Publications

In the list of 24 total, 18 are published or submitted and 13 are first-author papers. Google Scholar link

Under review / submitted

 P Verma, E Adeogun, ES Greene, S Dridi, U Nakarmi, et al.; Machine-learning classification of heat-stress in organisms using CNNs; ACS Sensors; 2024

Submitting next

- **P Verma**, U Nakarmi, K Nayani; Transformer and CNN based machine learning approaches to ligand discovery for viral purification; *The Journal of Chemical Information and Modeling*; **2024**
- P Verma, U Nakarmi, K Nayani; A new deep-learning approach for drug-like molecular classification and regression; Nature Communications; 2024
- P Verma, DN Ansari, TU Ansari; Deep learning algorithms for extraction of aerosol chemical composition from temporal variations of total PM mass; Environmental Science and Technology; 2024

Published

- P Verma, MH Van, X Wu; Beyond human vision: The role of large vision language models in microscope image analysis; *arXiv*; 2024; (preprint) (link)
- MH Van, P Verma, X Wu; On large visual language models for medical imaging analysis: an empirical study; IEEE/ACM CHASE;
 2024 (<u>link</u>)
- D Ansari, P Verma, T Ansari; Promise of machine learning techniques towards retrieving aerosol chemical composition from temporal variations of total PM mass concentrations; Journal of Research in Atmospheric Science; 5-1; 2023 (link)
- CW Irvin, CC Satam, K Shial, P Verma, NB Arroyo, et al.; Tricomponent polymer aerogels containing cellulose nanocrystals and chitin nanofibers and their use in aerogel/hydrogel hybrids as fibrocartilage replacements; *Journal of Applied Polymer Science*; 2023 (link)
- X Fang, H Sun, C Wu, ..., P Verma, et al.; Ag nanoparticle-thiolated chitosan composite coating reinforced by Ag–S covalent bonds with excellent electromagnetic interference shielding and Joule heating performances; ACS Applied Materials & Interfaces (IF=10.4); 2023 (link)
- P Verma, KB Wagner, AC Griffin, ML Shofner; Reversibility of auxetic response in polyester fiber needle-punched nonwovens; Physica Status Solidi B; 2022 (link)

- H Sun, X Fang, Z Fang, ..., P Verma, et al.; An ultra-sensitive and stretchable strain sensor based on micro-crack structure for motion monitoring; *Micro Nano (Nature) (IF=8.1)*; 8 (111); 2022 (link)
- P Verma, C Smith, AC Griffin, ML Shofner; Towards textile metamaterials: A pathway to auxeticity and tensegrity in a needlepunched nonwoven stiff felt; *Materials Advances (RSC) (IF=5.0)*; 2022 (link)
- Q Kang, X Fang, C Wu, P Verma, H Sun, et al.; Improvement mechanism of brittle-plastic transition and residual stress in scratching 4H–SiC implanted by hydrogen ions; *Ceramics International (IF=5.2)*; 2022 (link)
- P Verma, C Smith, AC Griffin, ML Shofner; Corrigendum: Wool nonwovens as candidates for commodity auxetic materials; Engineering Research Express; 4 029501; 2022 (link)
- Q Kang, X Fang, C Wu, P Verma, H Sun, et al.; Mechanical properties and indentation-induced phase transformation in 4H–SiC implanted by hydrogen ions; Ceramics International (IF=5.2); 2022 (link)
- P Verma, C Smith, AC Griffin, ML Shofner; Wool nonwovens as candidates for commodity auxetic materials; Engineering Research Express; 2 (4); 2021 (link)
- P Verma, C He, AC Griffin; Implications for auxetic response in liquid crystalline polymers; *Physica Status Solidi B*; 2000261;
 2020; (appeared in Wiley's 'Hot Topics: Liquid Crystals') (link)
- N Jappar, P Verma, J Holmes; Development of functional films in roll-to-roll manufacturing; RadTech; 2018; (conference paper) (link)
- P Verma, ML Shofner, A Lin, KB Wagner, AC Griffin; Induction of auxetic response in needle-punched nonwovens: Effects of temperature, pressure and time; *Physica Status Solidi B*; 253 (7); 2016 (link)
- P Verma, ML Shofner, A Lin, KB Wagner, AC Griffin; Inducing out-of-plane auxetic behavior in needle-punched nonwovens; Physica Status Solidi B; 252 (7); 2015 (link)
- P Verma, ML Shofner, AC Griffin; Deconstructing the auxetic behavior of paper; Physica Status Solidi B; 251 (2); 2013 (link)

Preprint

- X Fang, Q Kang, X Wu, ..., P Verma, et al.; Atomistic analysis on implantation effects of hydrogen ions and copper ions into 4h-SiC; SSRN; 2024 (link)

In progress

- E Adeogun, P Verma, D Iyer, S Srivastava, K Nayani; Formation of liquid crystalline coacervates via the complexation of chromonic mesogens and synthetic polymers; PNAS; 2024
- K Copenhaver, S Pennell, S Jain, PS Russo, P Verma; Classic Ubbelöhde intrinsic viscosity laboratory exercise made simple and fast; *Journal of Chemical Education*; 2023

Presentations

Speakers are shown in bold.

- P Verma, MH Van, X Wu; Evaluation of large vision language models on scientific images; Washington DC (USA); 2024 (link)
- P Verma, E Adeogun, ES Greene, S Dridi, U Nakarmi, et al.; CNN based rapid sensing of heat-stress in organisms; Orlando (USA); 2023 (link)
- P Verma, AC Griffin, ML Shofner; Pathways to manufacturing mechanical metamaterials by examining auxeticity in nonwoven fiber networks; Atlanta (USA); 2023; (Invited talk) (link)
- P Verma, ML Shofner, AC Griffin; Pathways to Commodity Mechanical Metamaterials Auxeticity in Nonwoven Fiber Networks; College Station (USA); 2022; (*Invited talk*) (<u>link</u>)
- P Verma, AC Griffin, ML Shofner; Nonwoven textile structures commodity pathways to auxeticity; Chicago (USA); 2022 (link)
- P Verma, ML Shofner, AC Griffin; Constructing out-of-plane auxetic response in paper; Denver (USA); 65 (1); 2020 (link)
- P Verma; Career pathways for polymer science students: industry vs higher education; Roorkee (INDIA); 2020; (Invited talk)
- P Verma, ML Shofner, AC Griffin; Auxetic behavior in fiber networks; San Diego (USA); 258; 2019
- PS Russo, X Zhang, P Verma, P Balding, G Parkinson, et al.; OPALL: The open polymer active learning laboratory at Georgia Tech; Orlando (USA); 257; 2019
- P Verma, C He, AC Griffin; X-ray scattering from LC polymers: Implications for auxetic response; Bedlewo (POLAND); 2019
- P Verma, KB Wagner, A Lin, ML Shofner, AC Griffin; Auxetic behavior in paper and nonwovens; Oak Ridge (USA); 2019
- P Russo, P Verma, X Zhang et. al.; Open polymer active learning laboratory; Oak Ridge (USA); 2019; (poster)
- P Verma, ML Shofner, AC Griffin; Origin of thickness change in needle-punched nonwovens; Sheffield (USA); 2018
- P Verma, **ML Shofner**, AC Griffin; Auxetic behavior of fiber networks: Paper and nonwoven fabrics; Lake Louise (CANADA); **2017** (link)
- P Verma, ML Shofner, AC Griffin; Reversibility of thickness change in nonwovens; Crete (GREECE); 2017
- P Verma, ML Shofner, AC Griffin; Auxetic liquid crystalline polymers; Crete (GREECE); 2017
- P Verma, ML Shofner, AC Griffin; Reversibility of thickness change in nonwovens; Poznan (POLAND); 2016
- P Verma, ML Shofner, AC Griffin; Inducing out-of-plane auxetic behavior in needle-punched nonwovens; Poznan (POLAND); 2014
- P Verma, ML Shofner, AC Griffin; Auxetic behavior in cellulose based fiber networks; New Orleans (USA); 2013

- H Yuan, J Marszalek-Kempke, P Verma, A Karim; Elastic moduli of polymeric thin films of nanocomposites and blends via buckling on elastomeric substrates; Boston (USA); 57 (1); 2012 (link)
- P Verma, ML Shofner, AC Griffin; Deconstructing the auxetic behavior of paper; Bolton (UK); 2012

Teaching experience

- Guest lecturer for Introduction to CNNs at U Arkansas (CSCE 4013) in 2022
- Guest lecturer for Thermal analysis of polymers at Georgia Tech (MSE 4476) in **2020**
- Guest lecturer for Mechanical properties of polymers at Georgia Tech (MSE 4476) in 2019
- Guest instructor for DSC and TGA of polymers at Georgia Tech (MSE 4476 (lab)) in 2019
- Guest instructor for Rheology of detergent at Georgia Tech (MSE 3225 (lab)) in **2019**
- Guest lecturer for Polymer rheology at Georgia Tech (MSE 3225) in 2019
- Teaching Assistant for DSC and TGA of polymers at Georgia Tech (MSE 4476 (lab)) in **2015**
- Teaching Assistant for Step, chain-growth, and emulsion polymerization at Georgia Tech (MSE 4476 (lab)) in 2014
- Teaching Assistant for Introduction to polymer/fiber enterprise at Georgia Tech (MSE 3720) in 2014
- Teaching Assistant for Thermal analysis, processing and rheology of polymers at Georgia Tech (MSE 4022 (lab)) in 2014
- Teaching Assistant for Step, chain-growth, and emulsion polymerization at Georgia Tech (MSE 4476 (lab)) in 2013
- Teaching Assistant for Thermal analysis, processing and rheology of polymers at Georgia Tech (MSE 4022 (lab)) in 2013
- Teaching Assistant for Introduction to materials science and engineering at Georgia Tech (MSE 1111) in 2012

Honors and awards

- 1. Selected for National Institute of General Medical Sciences (NISBRE) Conference Merit Award, U Arkansas, 2024
- 2. Postdoctoral Fellowship (including USDA \$300,000 grant to PI for my work), **U Arkansas**, 2021 2023
- 3. 5 year GT MSE mentorship award, Georgia Tech, 2021
- 4. Invited talk & career counselling for polymer graduates and undergraduates, **IIT Roorkee**, 2020
- 5. Executive Director, OPALL (Open Polymer Active Learning Laboratory), Georgia Tech, 2019 2021
- 6. Hightower Fellow, OPALL (Open Polymer Active Learning Laboratory), Georgia Tech, 2019 2021
- 7. Postdoctoral Fellowship, from Renewable Bioresources Institute, Georgia Tech, 2018 2020
- 8. Chairman, Technical Conference, Kimoto Tech, 2017
- 9. Second prize, poster competition (auxetic conference), Georgia Tech, 2014
- 10. PhD Fellowship, from Institute of Paper Science and Technology, Georgia Tech, 2012 2015
- 11. Chairman, National Polymer Conference, Cognizance, IIT Roorkee, 2009
- 12. Merit-based scholarship with tuition waiver, IIT Roorkee, 2007 2011

Research funding

Contributed to the planning, writing, editing and/or review of the following research funding proposals.

- 1. Developing liquid crystal based rapid optical sensors for detecting airborne viruses with SARS-CoV-2 and alpha-coronaviruses, NSF PIPP, PI: K Nayani, 2021
- 2. Awarded, Imaging and quantification of mitochondrial dynamics in response to mechanical stress, AIMRC, PI: K Nayani, 2021
- 3. Development of liquid crystal based wearable sensors for detecting airborne coronaviruses, PEW Biomedical, PI: K Nayani, 2021
- 4. Purification and rapid assessment of filled adeno-associated viral vectors, MAST UCRC, PI: K Nayani, 2021
- 5. Awarded, Development of convolutional neural networks that connect molecular signatures to rapid optical readouts on the health of chickens, USDA NIFA, PI: K Nayani, 2020
- 6. Zero-angle depolarized scattering (ZADS) and data analytics to determine molecular weight distributions of conjugated polymers, DOE FOA, PI: PS Russo, 2020
- 7. Awarded, Open Polymer Active Learning Laboratory: enhancing Georgia Tech's polymer profile in the residential highereducational institution of tomorrow, GT COE, PI: PS Russo, 2020

Research advising

Direct supervisor for members marked with an * . Last name has been hidden for the sake of privacy online. **Sydnee***, Molecular discovery using machine learning, 2022 – present. Journey – Senior (University of Arkansas) **Honglin**, Machine learning models for noise detection in light scattering data, 2021 – 2022. Journey – PhD candidate (Georgia Tech) **Evan***, Building custom convolutional neural networks, 2021 – 2021. Journey – Sophomore (University of Arkansas) **Brandon**, Isothermal titration calorimetry, 2021 – 2022. Journey – Junior (University of Arkansas) **Lauren***, Nanocellulose dispersion and auxetic composites, 2019 – 2020. Journey – Freshman (Georgia Tech) Marilyn*, Polyurethane and silicone auxetic composites, 2019 - 2020. Journey - Sophomore (Georgia Tech)

Casey*, Auxetic behavior in wool and stiff-felt fabrics, 2018 – 2019. Journey – Senior > PhD candidate (Georgia Tech)

Daniel*, Gloss and haze control in coatings, 2017 – 2018. Journey – Formulations Chemist (Kimoto Tech) > Development Chemist (Birla Carbon)

Carly*, Color correcting coatings for electronic displays, 2017 – 2018. Journey – R&D Chemist (Kimoto Tech) >>> Data Scientist (Takeda Pharmaceuticals)

Joseph*, Anti-glare and anti-sparkle coatings for touch screens, 2016 - 2018. Journey - R&D chemist (Kimoto Tech)

Thomas*, Protective hardcoats with adhesive backings, 2016 – 2018. Journey – R&D Chemist (Kimoto Tech) > Formulation Scientist (Meggit Aerospace)

Jennifer*, Silicone pressure sensitive adhesives, 2016 – 2017. Journey – R&D Chemist (Kimoto Tech) >>> Associate Senior Scientist (Pharmaceutical Associates Inc)

Stephen*, Antiglare, but also high-clarity, coatings, 2016 – 2018. Journey – R&D Chemist (Kimoto Tech)

Karla*, Auxetic behavior in needle-punched nonwovens, 2013 – 2014. Journey – Sophomore > PhD candidate (Georgia Tech)

Tony*, Measurement of auxetic responses, 2013 - 2014. Journey - Sophomore (Georgia Tech) > PhD candidate (MIT)

Emily, Cellulose and PVA based nanocomposites, 2013 – 2015. Journey – Junior >>> Senior Engineer (Exponent)

CJ*, Auxetic response of paper, 2012 – 2012. Journey – Sophomore (Georgia Tech) > Vice President (Electrical Cable Specialists)

Mentorship

Serving as a mentor for GT Mentor Jackets, GT MSE Industry Mentorship Program and IITR Alumni Mentorship Program. Last name has been hidden for the sake of privacy online.

Bachelor's

Jaejung from 2021 – 2022. Journey – Sophomore (Georgia Tech) Tanmay from 2020 – 2021. Journey – Sophomore (IIT Roorkee) Nadia from 2019 – 2021. Journey – Junior (Georgia Tech) > PhD candidate (MIT) Steven from 2019 – 2021. Journey – Senior > Master's student (Georgia Tech) Dillan from 2018 – 2019. Journey – Senior (Georgia Tech) > Engineer (Universal Alloy) Michael from 2017 – 2018. Journey – Freshman (Georgia Tech) > Intern (Lockheed Martin Space) Amanda from 2017 – 2018. Journey – Senior (Georgia Tech) > QA Coordinator (ALPLA Group) Ankit from 2016 – 2017. Journey – Freshman (Georgia Tech) > PhD candidate (UC Los Angeles) Sabrina from 2016 – 2017. Journey – Sophomore (Georgia Tech) > Senior Quality Engineer (Mainstay Medical)

Doctoral

Jude from 2022 – present. Journey – PhD candidate (U Arkansas) Elizabeth from 2021 – present. Journey – PhD candidate (U Arkansas) Homa from 2021 – present. Journey – PhD candidate (U Arkansas) Krishna from 2019 – 2020. Journey – PhD candidate (Georgia Tech) Hongmo from 2017 – 2018. Journey – PhD candidate (Georgia Tech) Sahitya from 2017 – 2018. Journey – PhD student (Georgia Tech) > Process Engineer (Intel Corporation) Helen from 2016 – 2017. Journey – PhD student (Georgia Tech) > Process Engineer (Intel Corporation)

Master's

Pragya from 2021 – 2021. Journey – Master's student (IIT Roorkee) **Ada** from 2018 – 2021. Journey – Master's student (Georgia Tech) > Senior Research Associate (Tessera Therapeutics)

Leadership

Leadership roles in various organizations and clubs.

- DEI council representative for research scientists and postdocs in the department, Georgia Tech, 2019 2021
- Co-launched, Postdoc Chats, series of social and professional development gatherings for postdocs campuswide, Georgia Tech,
 2019 present
- Advisor, to graduate and undergraduate members and users, OPALL Polymer Makerspace, Georgia Tech, 2019 2022
- Team Leader, for 5+ industry research scientists, Kimoto Tech, 2016 2018
- Co-manager, Polymer Thermal Analysis Lab, Georgia Tech, 2013 2015
- Student President (elected, Saharanpur Campus), IIT Roorkee, 2008 2009
- Founder and Team Leader, intranet web development, IIT Roorkee, 2007 2010

Scientific reviewing

Reviewed manuscripts for the following journals:

- Applied Sciences (MDPI)
- Computational Materials Science (Elsevier)
- Industrial & Engineering Chemistry Research (ACS)
- Journal of Engineered Fibers and Fabrics (Sage)
- Journal of Micromechanics and Microengineering (IOP)
- Journal of Rheology (AIP)
- Machines (MDPI)
- Materials Research Express (IOP)
- Physica Status Solidi (Wiley)
- Proceedings of the National Academy of Sciences (PNAS)
- Sensors (MDPI)
- Surface and Coatings Technology (Elsevier)

References

Anselm C Griffin, Professor Emeritus, Georgia Tech. Email: anselm.griffin@mse.gatech.edu
Meisha L Shofner, Associate Professor, Georgia Tech. Email: meisha.shofner@mse.gatech.edu (Website)
Paul S Russo, Professor, Georgia Tech. Email: paul.russo@mse.gatech.edu (Website)
Bin Li, Senior Research Chemist, Koppers. Email: binli415@gmail.com
Karthik Nayani, Assistant Professor, U Arkansas. Email: knayani@uark.edu (Website)
Ukash Nakarmi, Assistant Professor, U Arkansas. Email: unakarmi@uark.edu (Website)