PRATEEK VERMA

PHD. MACHINE LEARNING SCIENTIST.

☑ CONTACT FORM
⑤ WWW.PRATEEKVERMA.COM
☐ HIDDEN ONLINE

Machine learning scientist with domain expertise in chemicals, materials, health, and environment. Advisor and mentor. Research manager and leader. Passionate about building elegant things and finding elegant solutions.

WORK EXPERIENCE

MANAGER, DATA SCIENCE CORE, UNIVERSITY OF ARKANSAS

Arkansas Integrative Metabolic Research Center (AIMRC) group, 2023 - present

- Building machine learning algorithms focused on medical research
- Serving AIMRC researchers with their data science and machine learning needs
- Managing core computing facilities for the members of AIMRC

POSTDOCTORAL FELLOW, UNIVERSITY OF ARKANSAS

Nayani, Nakarmi and Wu groups, 2021 - 2023

- Fine-tuning and prompt engineering of large language models (LLMs) for the medical domain using multimodal data (ongoing).
- Built an end-to-end CNN ML pipeline for microscope images
- Built graph and generative algorithms for molecular discovery and finding functional groups on molecules and macromolecules.
- Applications: predicting onset of diseases, sensors for airborne bacteria and viruses, drug and molecular design, medical diagnosis

POSTDOCTORAL FELLOW, GEORGIA INSTITUTE OF TECHNOLOGY

Shofner and Russo groups, 2018 - 2021

- Developed multivariable deep neural network regression to split, interpolate, and predict total signal into constituents.
- Developing CNN and regression algorithms for noise detection in signals
- ML applications: Extract pollution composition (expensive measurement) from total PM2.5 (inexpensive) data; noise detection in light scattering data.
- Fabricated metamaterial composites using tensegrity/auxetic approaches.
- Executive Director for OPALL (Open Polymer Active Learning Laboratory)

SENIOR COATING CHEMIST, KIMOTO TECH

2016 - 2018

- Team leader for 5 R&D chemists
- Led scale-up and production of several lab-to-market products
- Development of flexible & protective coatings exhibiting UV-blocking, scratch and chemical resistance, electrical conductivity, anti-glare, etc.
- Development of conductive coatings and pressure sensitive adhesives

INTERNSHIPS

Georgia Tech (2011), U Akron (2011), UMass Amherst (2010) U Minnesota (2009)

- 17 papers published or submitted
- 12 first author papers
- **20** conference presentations
- 21 manuscripts reviewed

EDUCATION

GEORGIA INSTITUTE OF TECHNOLOGY PhD, 2011 – 2015 Materials Science and Engineering GPA 4.0/4.0

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

BS and MS, 2006 – 2011 Polymer Science and Technology GPA 8.5/10.0

NEW SKILLS

LARGE LANGUAGE MODELS
BIOPYTHON
VISION LANGUAGE MODELS
GRAPH NEURAL NETWORKS
CHEMICAL INFORMATICS
DJANGO
RDKIT
ML PIPELINES
RESNET
SUPPORT VECTOR MACHINES
ISOTHERMAL TITRATION CALORIMETRY

SELECT AWARDS

- 2021 MSE 5 year mentorship award
- 2020 Invited talk, IIT Roorkee
- 2019 Hightower Fellow, OPALL
- 2017 Chairman, Tech. Conference, Kimoto
- 2014 Second prize, auxetic conference
- 2009 Chairman for polymer conference

MACHINE LEARNING

CONVOLUTIONAL NEURAL NETWORKS			
GRAPH NEURAL NETWORKS			
IMAGE PREPROCESSING			
K-MEANS CLUSTERING			
LINEAR REGRESSION			
LOGISTIC REGRESSION			
ML PIPELINES			
CHEMICAL INFORMATICS			
LARGE LANGUAGE MODELS			
RESNET			
SUPPORT VECTOR MACHINES			
VISION LANGUAGE MODELS			

COMPUTATIONAL

MATLAB

DJANGO LAMMPS

MYSQL NUMPY

PANDAS

RDKIT TENSORFLOW

SCIKIT BIOPYTHON

MATPLOTLIB

AWS

MATERIALS
AUXETIC MATERIALS

AUXETIC MATERIALS
BIOPOLYMERS
CHARACTERIZATION
LIQUID CRYSTALS
METAMATERIALS
NANOTECHNOLOGY
POLYMER PROCESSING
STRUCTURE-PROPERTY RELATIONSHIPS
THERMAL ANALYSIS
VISCOELASTICITY
INDUSTRY

ADHESIVE COATINGS PROCESS DEVELOPMENT CHEMICAL MIXING CHEMICAL FORMULATIONS

PROTECTIVE COATINGS SCALE-UP OPERATIONS THERMAL & UV CURING

INTERPERSONAL

DEI	
ILLUSTRATION	
LEADERSHIP	
MENTORING	
RESEARCH ADVISING	
TEACHING	
TEAM BUILDING	

LAB TECHNIQUES

ATOMIC FORCE MICROSCOPY
DSC TGA DMA
ENVIRONMENTAL TESTING
FTIR
ISOTHERMAL TITRATION CALORIMETRY
MECHANICAL TESTING
MICRO-CT
ELECTRON MICROSCOPY
VISCOMETRY

COMPUTER LANGUAGES

C/C++	
JAVASCRIPT	
MATLAB	
РНР	
PYTHON	
SQL	

CHEMISTRY

FREE RADICAL POLYMERIZATION
LCE SYNTHESIS
POLYURETHANE SYNTHESIS
SILANES & SILICONES
THERMAL & UV CURING

SELECT PUBLICATIONS

- P Verma, U Nakarmi, K Nayani; Machine learning approaches to ligand discovery for viral purification; The Journal of Chemical Information and Modeling, 2024; (submitting next)
- P Verma, U Nakarmi, K Nayani; A new deep-learning approach for drug-like molecular classification and regression; Nature Communications; 2024; (submitting next)
- P Verma, E Adeogun, ES Greene, et al.; Machine-learning classification of heat-stress in organisms using CNNs; ACS Sensors; 2024; (under review / submitted)
- P Verma, DN Ansari, TU Ansari; Deep learning algorithms for extraction of aerosol chemical composition from temporal variations of total PM mass; Environmental Science and Technology, 2024; (submitting next)
- H Van, P Verma, X Wu; On large visual language models for medical imaging analysis: an empirical study; IEEE/ACM CHASE; 2024
- D Ansari, P Verma, T Ansari; Promise of machine learning techniques towards retrieving aerosol chemical composition from temporal variations of total PM mass concentrations; Journal of Research in Atmospheric Science; 2023
- H Sun, X Fang, ..., P Verma, et al.; An ultra-sensitive and stretchable strain sensor based on micro-crack structure for motion monitoring; Micro Nano (Nature) (IF = 8.1); 2022
- P Verma, C Smith, AC Griffin, et al.; Towards textile metamaterials: A pathway to auxeticity and tensegrity in a needle-punched nonwoven stiff felt; Materials Advances (RSC) (IF=5.0); 2022
- P Verma, C He, AC Griffin; Implications for auxetic response in liquid crystalline polymers; Physica Status Solidi B; 2020; (appeared in Wiley's 'Hot Topics: Liquid Crystals')
- 🚥 N Jappar, P Verma, J Holmes; Development of functional films in roll-to-roll manufacturing; RadTech; 2018; (conference paper) 🖘

SELECT PRESENTATIONS

- CNN based rapid sensing of heat-stress in organisms; Orlando (UNITED STATES); 2023
- Pathways to Commodity Mechanical Metamaterials Auxeticity in Nonwoven Fiber Networks; College Station (USA); 2022; Invited talk 🗢
- Constructing out-of-plane auxetic response in paper; Denver (USA); 2020 🗢
- OPALL: The open polymer active learning laboratory at Georgia Tech; Orlando (USA); 2019
- X-ray scattering from LC polymers: Implications for auxetic response; Bedlewo (POLAND); 2019
- Auxetic liquid crystalline polymers; Crete (GREECE); 2017
- Reversibility of thickness change in nonwovens; Poznan (POLAND); 2016
- Elastic moduli of polymeric thin films of nanocomposites and blends via buckling on elastomeric substrates; Boston (USA); 2012

PROFESSIONAL SERVICE

PEER REVIEWING

Reviewed more than **21** manuscripts for journals such as: Computational Materials Science (Elsevier), Industrial & Engineering Chemistry Research (ACS), Materials Research Express (IOP), Physica Status Solidi (Wiley), Proceedings of the National Academy of Sciences (PNAS), Surface and Coatings Technology (Elsevier), etc.

MENTORING

Served as a mentor for Mentor Jackets, MSE Industry Mentoring and IITR's Alumni Mentorship Program since 2016 for:

- 9 Bachelor's students
- 7 Doctoral students
- 2 Master's students

RESEARCH ADVISING

Advised the research of **17** (direct supervisor for 14) industry members / graduates / undergraduates in the following broad areas:

- convolutional neural networks
- machine learning for molecules
- linear and logistic regression
- auxetics and metamaterials
- structure-property relationships

SELECT LEADERSHIP

- DEI council representative for MSE staff, Georgia Tech, 2019-2021
- Co-launched Postdoc Chats, Georgia Tech, 2019-present
- Advisor/mentor for OPALL members, Georgia Tech, 2019-2022
- Team leader, Kimoto Tech, 2016-2018
- Co-manager for thermal analysis lab, Georgia Tech, 2013-2015

REFERENCES

ANSELM C GRIFFIN

Professor Emeritus, Georgia Tech ☑ anselm.griffin@mse.gatech.edu

MEISHA L SHOFNER Associate Professor, Georgia Tech Meisha.shofner@mse.gatech.edu

PAUL S RUSSO

Professor, Georgia Tech ☑ paul.russo@mse.gatech.edu

BIN LI

Senior Research Chemist, Koppers ☑ binli415@gmail.com

KARTHIK NAYANI

Assistant Professor, U Arkansas ⊠ knayani@uark.edu

EXTRACURRICULARS

- Gets way too excited about graphics design and web development
- Is the best table tennis player in the break room
- Paints and draws

